The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X
0 2X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2X 0 2X 2X 0 2X 2X 0 2X 2X 2X 0 2X 0 2X 2X 0 2X 2X 0 2X 2X 0 2X 2X 0 0 2X 2X 2X 2X 0 2X 2X
0 0 2X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 0 2X 2X 0 2X 2X 0 0 2X 2X 2X 2X 0 2X 0 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 2X 0 2X 2X 0
0 0 0 2X 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 0 2X 2X 2X 2X 0 2X 2X 0 2X 2X 0 2X 2X 0 0 0 2X 0 0 0 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0
0 0 0 0 2X 0 0 0 2X 2X 2X 2X 2X 0 2X 2X 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 2X 0 2X 0 2X 0 2X 0 2X 0 2X 2X 2X 2X 0 2X 2X 2X 2X 0 0 0
0 0 0 0 0 2X 0 2X 2X 2X 0 0 0 0 2X 2X 2X 0 0 0 0 0 0 0 2X 2X 2X 0 0 2X 2X 2X 2X 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 2X 2X
0 0 0 0 0 0 2X 2X 0 2X 2X 0 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 2X 0 2X 0 0 0 0 0 2X 0 2X 2X 0 2X 0 2X 2X 2X 0 0 0 2X 2X 0 2X 2X
generates a code of length 51 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 48.
Homogenous weight enumerator: w(x)=1x^0+78x^48+96x^50+768x^51+32x^54+48x^56+1x^96
The gray image is a code over GF(2) with n=408, k=10 and d=192.
This code was found by Heurico 1.16 in 0.11 seconds.