Abstract
In condensed matter physics there is a novel phase termed ‘quantum spin liquid’, in which strong quantum fluctuations prevent longrange magnetic order from being estab lished, and so electron spins do not form an ordered pattern but remain liquidlike even at absolute zero temperature. Such a phase is not involved in any spontaneous symmetry breaking and local order parameter, and to understand it is beyond conventional phase transition theory. Due to the rich physics and exotic properties of quantum spin liquids, such as longrange entanglement and fractional quantum excitations, which are believed to hold great potential for quantum communication and computation, they have been intensively studied since the concept was proposed in 1973 by P.W. Anderson. Currently, experimental identification of a quantum spin liquid remains a great challenge. Here, we highlight some interesting experimental progress that has been made recently. We also discuss outstanding issues and raise questions that we consider to be important for future research.
The road to quantum spin liquids
As we learn from the textbook, a magnetic material tends to have their electron spins arrange into a certain, for example, parallel or antiparallel pattern at low temperatures to minimize the free energy. The two patterns correspond to the ferromagnet and antiferromagnet, which are governed by a negative and positive superexchange coupling constant J, respectively. However, for materials that have competing magnetic interactions, the situation sometimes can be complicated. For example, in each of the edgeshared triangular lattice as sketched in Fig. 1a, a third spin cannot align antiparallelly to the other two to satisfy the J > 0 condition simultaneously. As such, the magnetic interaction of this spin is frustrated due to the triangular geometry, and the spin direction remains undetermined.^{1} Later on, it has been shown that there is a classical solution to avoid such a geometrically frustrated configuration on the triangular lattice—each spin on a triangle points to 120° with respect to each other, leading to a ground state with the 120° longrange magnetic order.^{2}
In 1973, P.W. Anderson proposed a more exotic ground state to describe the antiferromagnetically interacting spins on the twodimensional triangular lattice.^{3} The model used to describe this state is the resonating valence bond (RVB) model, in which any two antiparallel spins pair up to form a spin singlet, with a total spin S = 0 and vanishing net magnetic moment. Due to strong quantum fluctuations arising from the geometrical frustration, there is no particular arrangement of these singlets. In a technical language, the wavefunction of the RVB state is a linear superposition of all possible configurations of the singlets, as illustrated in Fig. 1b. In this case, the strongly interacting spins do not develop a longrange magnetic order even at the absolute zero temperature, and the spin pattern for such a state is like a liquid. Such a novel quantum state is termed the quantum spin liquid (QSL), which has the following features: absence of longrange magnetic order, no spontaneous symmetry breaking of the crystal lattice or spins, longrange entanglement between the spins and as a consequence, fractional spin excitations. Note that a QSL is fundamentally distinct from a classical spin liquid. The latter is because the thermal fluctuation energy k_{B}T dominates over J, and the magnetic order is not established at high temperatures. The defining features—longrange entanglement and fractional spin excitations for a QSL are absent in such a classical state. The physics is driven by the spin dynamics, instead of the statics, which shows interesting effects from spin–spin correlation that are quantum in nature at low temperatures (i.e. k_{B}T ≪ J). The RVB proposal initiated enormous efforts seeking for QSLs both on the theoretical and experimental sides.^{1,4,5,6}
Compared to the triangular lattice, quantum fluctuations due to the geometrical frustration and low coordinations are even stronger in the kagome lattice, which has six cornershared triangles surrounding a hexagon as illustrated in Fig. 1c. For the kagome lattice, geometrical frustration cannot be bypassed by having the 120° order as does the triangular lattice.^{2} Theoretical calculations suggest that the ground state for the kagome lattice is a QSL, although the detailed classification for such a state is still under hot debate.^{7,8,9,10,11} We should also mention that in the pyrochlore lattice, which hosts the spinice phase, there also exists large geometrical frustration, and the QSL phase is also possible in principle, in the case of small spins.^{1,12}
QSLs resulting from geometrical frustration in the triangular, kagome and pyrochlore lattices are usually inferred from approximations and conjectures, as the quantum spin model with frustrations can be hardly solved at present. On the other hand, in 2006, Alexei Kitaev^{13} proposed an exactly solvable S = 1/2 model on the honeycomb lattice (Fig. 1d), which has substantially advanced the field. This model, as in Eq. 1, is named the Kitaev model.
Here, H is the Hamiltonian and K_{x,y,z} are the nearestneighbour Isingtype spin interactions along the x, y and z bonds (Kitaev interactions). It has been shown that the exact ground state of the Kitaev model is a QSL, which may be gapped or gapless depending on the relative strength of the Kitaev interactions along the three bonds.^{13} Unlike QSLs described by the RVB model, the QSL state in the Kitaev model (Kitaev QSL hereafter) is defined on the honeycomb lattice where geometrical frustration is absent. Instead, the presence of bonddependent Kitaev interactions induces strong quantum fluctuations that frustrate spin configurations on a single site, resulting in a Kitaev QSL state.
The Kitaev model is simple and beautiful but was considered as a ‘toy’ model in the beginning, since the underlying anisotropic Kitaev interactions are unrealistic for a spinonly system. One brilliant proposal to realize the Kitaev interaction is to include the orbital degree of freedom in a Mott insulator that arises from the combination of the crystal electric field, spin–orbital coupling (SOC), and electron correlation effects.^{14} A Mott insulator is an insulator that band theory predicts to be metallic, but turns out to be insulating due to electron–electron interactions.^{15} In the proposal,^{14} the electronic configuration is a consequence of the following processes: First, the octahedral crystal field splits the d orbitals into triply degenerate t_{2g} and doubly degenerate e_{g} orbitals at low and high energies, respectively; second, in the presence of strong SOC, the degeneracy of the t_{2g} is lifted, giving rise to one effective spin J_{eff} = 1/2 and one J_{eff} = 3/2 band, both of which are entanglements of the S = 1/2 spin and L_{eff} = −1 orbital moment for t_{2g}; third, the resulting J_{eff} = 1/2 band is narrower than the original triply degenerate t_{2g} band. Consequently, a moderate electron correlation will open a gap and split this band into a lower and upper Hubbard band. Such a state is a J_{eff} = 1/2 Mott insulator. Due to the spatial anisotropy of the d orbitals and strong SOC, the exchange couplings between the effective spins are intrinsically anisotropic and bond dependent, and will give rise to the Kitaev interactions under certain circumstance.^{13,14} These advancements bring the hope to find Kitaev QSLs in real materials, and have motivated intensive research in searching for QSLs beyond the triangular, kagome and pyrochlore lattices in recent years.^{16,17}
Why QSLs are of interest
QSL is a highly nontrivial state of matter. Ordinary states are often understood within Landau’s framework in terms of order, phase transition and symmetry breaking. However, a QSL does not have a local order parameter and avoids any spontaneous symmetry breaking even in the zerotemperature limit, so to understand it requires theories beyond Landau’s phase transition theory. In fact, most QSLs are believed to be associated with topological order and phase transition.^{18,19}
QSLs are Mott insulators where the bands are half filled, and different from band insulators, where the bands are fully filled or empty. Here, the electron–electron correlation is important, and the conventional band theory with the singleparticle approximation does not work well.^{20,21} Therefore, understanding QSLs should and has already provided deep insights into the rich physics of strongly correlated electron systems. Moreover, in 1987, a year after hightemperature superconductivity was discovered in copper oxides,^{22} P.W. Anderson^{23} proposed that the parent compound, a Mott insulator La_{2}CuO_{4}, which by doping with carriers can superconductivity be achieved, was a QSL. This proposal injects significant momentum into the research of QSLs as it may lend support to solve the puzzle of hightemperature superconductivity.^{15}
Besides the fascinating physics associated with QSLs, they also hold great application potentials. For example, in a QSL, the spins are entangled over a long range, which is an essential ingredient for quantum communication.^{24} Another important property of a QSL associated with the longrange entanglement is the presence of fractional spin excitations. For instance, a Kitaev QSL can support fractional excitations represented by Majorana fermions, which can be made to behave as anyons obeying the nonAbelien statistics in the presence of magnetic field.^{13} Braiding these anyons is an important step towards the topological quantum computation.^{25}
Candidate materials
Motivated by the rich physics and fascinating properties of QSLs, studying these materials has been a 45year long but still dynamic field. There has been a lot of progress made both on the theoretical and experimental aspects. QSLs in onedimensional magnetic chain have been well established and will not be discussed in this work. For reference, there is a recent review article in this topic in ref. ^{26} Here, we will focus on QSLs in two or three dimensions. There have been many theoretical proposals for QSLs. For details, please refer to the reviews and references therein.^{5,6,17}
Experimentally, numerous materials have been suggested to be candidates for QSLs, some of which are tabulated in Table 1 and Table 2. We classify these materials into two categories—geometrically frustrated materials where the RVB model is applicable (Table 1) and Kitaev QSL candidates where the Kitaev physics is relevant (Table 2). For the majority of these materials, the discussions of QSL physics are in two dimensions, where the reduced dimensionality enhances quantum fluctuations needed for QSLs. In recent years, there have also been attempts to look for threedimensional QSL candidates, such as hyperkagome Na_{4}Ir_{3}O_{8} (ref. ^{27}) and PbCuTe_{2}O_{6},^{28} hyperhoneycomb βLi_{2}IrO_{3},^{29} and stripyhoneycomb γLi_{2}IrO_{3}.^{30} A more detailed review on the search of threedimensional QSLs can be found in ref. ^{17}
How to identify a QSL experimentally
Technique overview
Strictly speaking, to identify a QSL, one should perform measurements at absolute zero temperature, which is not practical. As a common practice, it is often assumed that when the measuring temperature T is far below the temperature, which characterizes the strength of the magnetic exchange coupling, say two orders of magnitude for instance, the finitetemperature properties can be a representation of those of the zerotemperature state, provided that there is no phase transition below the measuring temperature. Even so, experimental identification of a QSL is still challenging since a QSL does not spontaneously break any lattice symmetry and no local order parameter exists to describe such a state. One first step is to prove that there is no magnetic order nor spin freezing down to the lowest achievable temperature in, preferably, lowspin systems whose spin interactions are dominantly antiferromagnetic. For example, measuring the magnetic susceptibility is very useful in this aspect. By performing a Curie–Weiss fit to the hightemperature magnetic susceptibility, one can also obtain the Curie–Weiss temperature Θ_{CW} that characterizes the strength of the antiferromagnetic interactions. We list the Θ_{CW} and exchange coupling constant J for some materials in Table 1.
Specific heat is also quite often measured to help screen a QSL. For a material that orders magnetically at low temperatures, a λtype peak in the specific heat vs. temperature curve is generally expected. By contrast, for a QSL, such a sharp peak is typically absent, unless in the case such as that there is a topological phase transition.^{31} Furthermore, it also reveals that whether there exist finite magnetic excitations at low temperatures or not. The residual magnetic entropy can be calculated, provided that the phonon contribution to the specific heat can be properly subtracted, ideally by subtracting the specific heat of a proper nonmagnetic reference sample. By examining how much entropy has already been released at the measuring temperature, the possibility of establishing a longrange magnetic order at a lower temperature can be estimated.^{32,33} In addition to these macroscopic measurements, microscopic probes such as muon spin relaxation (µSR) and nuclear magnetic resonance (NMR) that are sensitive to the local magnetic environment are also often used to detect whether there is spin ordering or freezing.^{34,35,36} Neutron diffraction can also tell explicitly whether a system is magnetically ordered or not.
These measurements reveal very important information, but are not completely satisfactory, partly because: even though magnetic ordering can be excluded, such a ground state without a longrange order may be caused by the disorder, which leads to a percolative breakdown of the longrange order. In such a case, the spinliquidlike state is similar to a classical spin liquid, but essentially different from a QSL. So, are there better approaches that can identify a QSL more directly from a positive aspect?
The key features defining a QSL are the longrange entanglement and the associated fractional spin excitations. At present, it is hard to define and characterize the former, so the answer to this question mostly lies on the fractional excitations, for example, spinons predicted in the RVB model.^{3} Spinons are chargeneutral fermionic quasiparticles carrying fractional spins such as S = 1/2, resulting from the fractionalization of the S = 1 excitations. They are deconfined from the crystal lattice, have their own dispersions and become itinerant in the crystal. For a certain type of QSLs, for instance, U(1) gapless QSLs, in which the lowenergy effective model has a U(1) gauge structure, spinons form a Fermi sea, similar to that formed by electrons in a metal.^{37} Techniques that are sensitive to magnetic excitations such as inelastic neutron scattering (INS), thermal conductivity and thermal Hall conductivity, NMR, electronspin resonance and specific heat, as well as Raman and terahertz (THz) spectroscopies, can be utilized to clarify whether fractional excitations are present in a QSL candidate, and to classify the type of a particular QSL based on the behaviours of the fractional excitations. Below, we provide some example studies on QSL candidates using these techniques.
Examples
One of the most convincing evidences for the presence of deconfined spinons with fractional quantum number S = 1/2 is the observation of broad continuum magnetic excitation spectra in INS measurements. Since magnetic neutron scattering is a spin1 process, at least one spinon pair must be excited in a spinflip event. In this case, any pair of the spinons that satisfies the energymomentum conservation rule E_{q} = ε_{s}(k) + ε_{s}(q−k) can be excited. Here, ε_{s}(k) is the dispersion of spinons, and E and q are the energy and momentum transfers, respectively. Since there are many k values that obey this rule for any particular combination of E and q, a continuous spectrum that is broad both in momentum and energy can be observed by INS measurements for a QSL whose fractional excitations are spinons. Such a continuum has been reported in various compounds, such as ZnCu_{3}(OH)_{6}Cl_{2} (herbertsmithite),^{38} Ca_{10}Cr_{7}O_{28},^{34} Ba_{3}NiSb_{2}O_{9} (ref. ^{39}) and YbMgGaO_{4}.^{40,41} An example of the broad continuum in herbertsmithite is shown in Fig. 2.^{38} The spectra in the momentum space in Fig. 2a are diffusive and elongating along the (100) directions. The dispersions in Fig. 2b are continuous in the whole energy range measured. These results are distinct from welldefined spin excitations in the magnetic order state, which are sharply peaked around the ordering wavevector. Since different types of QSLs will give rise to different excitation spectra,^{42} analyzing the detailed momentum and energy dependence of the continuous spectra will help classify the QSLs. For instance, for ZnCu_{3}(OH)_{6}Cl_{2}, based on the spectral weight distribution in the momentum space,^{38} it is suggested that this compound is a Dirac QSL, featuring linearly dispersing spinonon bands.^{42} On the other hand, Ba_{3}NiSb_{2}O_{9} and YbMgGaO_{4} have been classified to be the U(1) QSL having a large spinon Fermi surface.^{39,40}
In the meanfield level, spinons are free fermions. So, if spinons exist at low energies, the spinon term (κ_{s}) should dominate the thermal conductivity, κ, as the electron (κ_{e}) and phonon terms (κ_{p}) in κ = κ_{e} + κ_{p} + κ_{s} are either zero or small at low temperatures. In Fig. 3, the thermal conductivity over T (κ_{xx}/T) of EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, a QSL candidate with the triangularlattice structure, is plotted against T^{2} in comparison with those of another triangularlattice QSL candidate κ(ET)_{2}Cu_{2}(CN)_{3} and a nonmagnetic compound Et_{2}Me_{2}Sb[Pd(dmit)_{2}]_{2}.^{43} In contrast to the latter two, where κ_{xx}/T is 0 as T approaches 0, the residual κ_{xx}/T for EtMe_{3}Sb[Pd(dmit)_{2}]_{2} is 0.2 W K^{−2 }m^{−1}.^{43} The presence of large residual κ_{xx}/T is also confirmed in the inset of Fig. 3 in which κ_{xx}/T is plotted as a function of T. This result is consistent with the observation of gapless magnetic excitations in the specific heat measurement.^{44} Empirically, κ = (1/3)C_{m}v_{F}l, where C_{m}, v_{F} and l are magnetic specific heat, Fermi velocity and meanfree path, respectively. Using this formula, it is estimated that the highly mobilized magnetic excitations have an l of ∼1000 times of the spin–spin distance.^{43} These results indicate the presence of gapless magnetic excitations, which are a rare example where thermal conductivity measurements agree with the specific heat data in the studies of QSL candidates.^{44}
In recent years, αRuCl_{3} with the honeycomblattice structure has been studied intensively for the sake of Kitaev QSLs. The reality is that the ground state of αRuCl_{3} is not a Kitaev QSL, but a zigzag magnetic order state, as illustrated in the inset of Fig. 4a.^{45,46} Starting from the fiveorbital Hubbard model and based on the energyband structure calculated from the firstprinciples method, Wang et al.^{47} have found that the minimal effective model to describe the zigzag order in αRuCl_{3} is the socalled K–Γ model,^{48} where K and Γ represent the Kitaev and offdiagonal interactions, respectively. In particular, the Kitaev interaction is shown to be ferromagnetic and large in this material, demonstrating that the anisotropic Kitaev interaction underlying a Kitaev QSL can be realized in real materials.^{49} We note that there is still ongoing debate on the sign of the Kitaev interaction.^{17,50,51} Furthermore, INS results indicate that the zigzag ground state of αRuCl_{3} may be proximate to the Kitaev QSL phase.^{52} As shown in Fig. 4b, in the zigzag order phase, in addition to the spinwave excitations dispersing from (0.5, 0, 0) (the M point of the Brillouin zone), there also exist broad continuous excitations at the Brillouin zone centre (Γ point), the latter of which are believed to be associated with fractionalized excitations resulting from the Kitaev QSL phase.^{53,54,55}
The magnetic order is rather fragile, with an ordered moment of ∼0.4µ_{B} and an ordering temperature of ∼8 K.^{45,46} Such a fragile order can be fully suppressed by either an inplane magnetic field^{56} or pressure.^{57,58} Intensive research on the field effects in αRuCl_{3} utilizing various techniques has resulted in many similar phase diagrams, which are summarized in the review article in ref. ^{59} In Fig. 4a, we sketch an oversimplified phase diagram with only two phases, namely, the lowfield zigzag order phase and the highfield disordered phase. It is now believed by many that above the critical field B_{c} around 7.5 T, when the zigzag magnetic order is fully suppressed, the highfield disordered state is the QSL state, although the detailed nature of this phase is still under debate.^{59}
Banerjee et al.^{60} have carried out INS measurements to examine the magneticfield evolution of the magnetic excitations, and some of the results are shown in Fig. 4b, c. They find that the spinwave excitations associated with the zigzag order near the M point (in the trigonal space group) are suppressed with the field. As shown in Fig. 4c, above B_{c}, at µ_{0}H = 8 T, excitations near the M point are completely gone, and only broad continuous excitations believed to be resulting from the Kitaev QSL phase near the Γ point remain. The highfield results are similar to the results under zero field above the ordering temperature.^{60} By comparing with calculations involving a pure Kitaev model, they suggest that the excitations under high fields resemble those of a Kitaev QSL.^{60} Very recently, thermal Hall conductivity measurements have observed halfinteger quantized plateau around B_{c}, indicating that the phase in this regime is the topologically nontrivial chiral QSL, while the state for B > 9 T is not topological.^{61}
Outstanding questions
In recent years, a lot of progress has already been made in the research of QSLs, but for the existing QSL candidates, there are more or less some drawbacks and unresolved issues. For example, for the Kitaev QSL candidates listed in Table 2, the ground state exhibits either static magnetic order or shortrange spin freezing.^{17} For organic compounds such as κ(BEDTTTF)_{2}Cu_{2}(CN)_{3}, the specific heat indicates a gapless ground state,^{62} but thermal conductivity measurements reveal no contributions from the magnetic excitations,^{63} inconsistent with the gapless QSL state. Is the contradiction resulting from the disorder effect which makes the spinons localized and thus not conduct heat? Or the ground state is not a QSL at all? Or there could be some other possibilities, for example, spinlattice decoupling as suggested recently in ref. ^{64}? Moreover, difficulties in single crystal growth of the organic QSL candidate materials limit experimental investigations. For one of the most heavily studied QSL candidates, a kagome lattice ZnCu_{3}(OH)_{6}Cl_{2}, the presence of 5–15% excess Cu^{2+} replacing the nonmagnetic Zn^{2+} induces randomness in the magnetic exchange coupling,^{65} complicating the explanations of the experimental observations, and causing difficulties in understanding its ground state.^{38,66}
For geometrically frustrated materials, in the presence of disorder, the spinglass phase can often emerge, since disorder and frustration are the two major ingredients for a spin glass.^{67} Spins in a spin glass remain liquid like above the freezing temperature and establish shortrange order below it. A spin glass is different from a QSL but can mimic it in many aspects, for example, the absence of longrange magnetic order, and moreover, as demonstrated in ref., ^{33} the presence of continuous broad INS spectra. Below, we will give an example to elaborate this point further.
Recently, there has been accumulating evidence that YbMgGaO_{4} is a promising candidate as a gapless QSL.^{32,36} By replacing Mg with Zn, Ma et al.^{33} have grown a compound isostrcutural to YbMgGaO_{4}–YbZnGaO_{4}.^{33} They have measured the new compound YbZnGaO_{4} utilizing various techniques, including direct current susceptibility, specific heat and INS. These measurements show YbMgGaO_{4} and YbZnGaO_{4} to be quite similar, both exhibiting no longrange magnetic order but prominent broad continuous gapless excitation spectra. These observations are taken as strong evidence for the gapless QSL phase in YbMgGaO_{4}.^{41,32} By a closer look, they have found that the magnetic exchange coupling strengths in these materials are rather weak, only in the order of 0.1 meV,^{32,33,36} while the disorder effect is rather strong due to the random mixing of Mg^{2+}/Zn^{2+} and Ga^{3+}.^{68,69} Considering these, they have introduced disorder into a stripeorder phase, which is suggested to be the ground state for YbMgGaO_{4} in the absence of disorder,^{70,71} and reproduced the broad excitation continua in agreement with those observed experimentally.^{33} These results show that an antiferromagnet with disorder can also exhibit the continuumlike INS spectra.
A key feature that distinguishes a disorder or thermally driven spin liquid from a QSL is whether there exist fractional spin excitations, such as the chargeneutral spin S = 1/2 spinons in this case. For a U(1) gapless QSL as proposed for YbMgGaO_{4},^{40} the spinons should contribute to the thermal conductivity significantly.^{43} However, as shown in Fig. 5a, the thermal conductivity of YbMgGaO_{4} and YbZnGaO_{4} are almost identical, with no contribution from magnetic excitations.^{33} Instead, it appears that the role of the gapless magnetic excitations is to scatter off phonons, causing a reduction in the thermal conductivity compared to that of the nonmagnetic sample, LuMgGaO_{4}. The absence of magnetic thermal conductivity in YbMgGaO_{4} and YbZnGaO_{4} is difficult to be reconciled with a gapless QSL state. Besides, for the U(1) QSL state proposed in YbMgGaO_{4}, the magnetic excitation spectra should exhibit stronger intensity at the Brillouin zone corner, in contrast to the experimental observations.^{33,40,41} Alternatively, Ma et al.^{33} suggest that these materials are spin glasses, with frozen shortrange correlations below the freezing temperature. For both samples, they have identified such a phase from the alternating current (a.c.) susceptibility measurements, which show strong frequencydependent peaks around 0.1 K (Fig. 5b, c), characteristic of a spin glass.^{67} These results demonstrate that a geometrical frustration and disorder induced spinglass phase can behave like a QSL in various aspects.^{33,70,72} We note that a µSR study on YbMgGaO_{4}^{73} shows that the spins remain fluctuating down to 0.07 K, below the freezing temperature reported in the a.c. susceptibility measurements.^{33} This may be because these two techniques cover different time scales (Fig. 6). More recently, Kimchi et al.^{74} have proposed a disorderinduced valence bond glass state, which may also explain the behaviours in YbMgGaO_{4} and YbZnGaO_{4}.
Outlook
At present, we may still have not found an ideal QSL. But with such intensive and sustained efforts on theory, material searching and characterizations, this field has been substantially moved. Below, we raise several points which we hope to motivate future research:

(i)
In material searching, we should still look for QSL candidates in materials with small spins and strong geometrical frustration in triangular, kagome and pyrochlore lattice.^{1} Ideally, a promising QSL candidate material should fulfill the following criteria: (i) It should have large magnetic exchange interactions, so that it is robust to disorder and easier to be accessed experimentally; (ii) It should have little disorder, so that the intrinsic physics is more prominent; (iii) it should have minimal extra interactions, so that the ground state exhibits no static magnetic order. Besides, now the material search can be extended to the SOCassisted Mott insulators in the honeycomb lattice, which may possess anisotropic bonddependent Kitaev interactions needed to form a Kitaev QSL.^{17} In this regard, H_{3}LiIr_{2}O_{6} fulfilling this condition has been suggested to be a Kitaev QSL very recently.^{75} Currently, the search for Kitaev QSLs have been focused on iridates and αRuCl_{3}, where the electronic configuration of Ir^{4+} and Ru^{3+} is d^{5} with an effective spin j_{eff} = 1/2.^{17} Recently, Kitaev physics has also been discussed in ions which have the d^{7} configuration, such as Co^{2+}, where the combination of S = 3/2 and orbital moment L_{eff} = −1 can also give rise to a j_{eff} = 1/2 state.^{76} Moreover, the possibility of realizing QSL physics in a square lattice featuring competing magnetic interactions (e.g. competing nearest and nextnearestneighbour exchange couplings) has also been widely discussed in recent years.^{77,78,79} In some occasions, there may be some other interactions that disturb the QSL state, making the material not an ideal QSL but proximate to it. Such studies are also encouraging as they not only help understand the physics of QSLs, but also offer the possibility of finding a true QSL state by suppressing the extra interactions.^{17,59}

(ii)
Identifying a QSL experimentally is a great challenge. At present, the most feasible route is to study the fractional spin excitations. Whether there exist such excitations determines whether the material is a QSL or not, and what behaviours these excitations have determined the type of QSL it can be classified into. As discussed above, there has already been some progress made in this respect. We believe that by finding more QSL candidates, improving the sample quality and increasing the instrumental resolutions, the research on QSLs can be continuously advanced.

(iii)
In QSLs, orbital, spin and lattice are quite often involved and interacting. Therefore, quantum manipulating by various tuning parameters, such as magnetic field, pressure and doping, can lead to emergent intriguing physics. For example, according to the theoretical proposals, QSLs are the parent states of hightemperature superconductors.^{23} In this aspect, there have already been some successes in inducing superconductivity in some QSL candidates by applying pressures onto organic compounds.^{80} On the other hand, using a more common approach—carrier doping to induce hightemperature superconductivity, turns out to be not so successful so far.^{81} Is it the problem of the target material? For example, it is not a real QSL? Then, if a real QSL exists, will doping it with carriers eventually lead to hightemperature superconductivity as predicted?^{23} We note that recently, there are advances in promoting the doping capability using electricfield gating.^{82} Will this technique help achieve the goal?
References
 1.
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
 2.
Bernu, B., Lecheminant, P., Lhuillier, C. & Pierre, L. Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice. Phys. Rev. B 50, 10048–10062 (1994).
 3.
Anderson, P. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).
 4.
Mila, F. Quantum spin liquids. Euro. J. Phys. 21, 499 (2000).
 5.
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).
 6.
Zhou, Y., Kanoda, K. & Ng, T.K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
 7.
Sachdev, S. Kagom’e and triangularlattice Heisenberg antiferromagnets: ordering from quantum fluctuations and quantumdisordered ground states with unconfined bosonic spinons. Phys. Rev. B 45, 12377–12396 (1992).
 8.
Yan, S., Huse, D. A. & White, S. R. Spinliquid ground state of the S = 1/2 Kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).
 9.
Mei, J.W., Chen, J.Y., He, H. & Wen, X.G. Gapped spin liquid with Z_{2} topological order for the kagome Heisenberg model. Phys. Rev. B 95, 235107 (2017).
 10.
Ran, Y., Hermele, M., Lee, P. A. & Wen, X.G. Projectedwavefunction study of the spin1/2 Heisenberg model on the Kagom’e lattice. Phys. Rev. Lett. 98, 117205 (2007).
 11.
Liao, H. J. et al. Gapless spinliquid ground state in the S = 1/2 kagome antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017).
 12.
Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).
 13.
Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
 14.
Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).
 15.
Lee, P. A., Nagaosa, N. & Wen, X.G. Doping a Mott insulator: physics of hightemperature superconductivity. Rev. Mod. Phys. 78, 17 (2006).
 16.
Hermanns, M., Kimchi, I. & Knolle, J. Physics of the kitaev model: fractionalization, dynamic correlations, and material connections. Annu. Rev. Condens. Matter Phys. 9, 17–33 (2018).
 17.
Winter, S. M. et al. Models and materials for generalized Kitaev magnetism. J. Phys. Condens. Matter 29, 493002 (2017).
 18.
Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376–381 (2010).
 19.
Wen, X.G. Colloquium: zoo of quantumtopological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).
 20.
WitczakKrempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).
 21.
Rau, J. G., Lee, E. K.H. & Kee, H.Y. Spin–orbit physics giving rise to novel phases in correlated systems: Iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 195–221 (2016).
 22.
Bednorz, J. G. & Mu¨ller, K. A. Possible high Tc superconductivity in the BaLaCuO system. Z. Phys. B 64, 189 (1986).
 23.
Anderson, P. W. The Resonating Valence Bond State in La_{2}CuO_{4} and Superconductivity. Science 235, 1196–1198 (1987).
 24.
Jiang, H.C., Wang, Z. & Balents, L. Identifying topological order by entanglement entropy. Nat. Phys. 8, 902 (2012).
 25.
Kitaev, A. Y. Faulttolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
 26.
Vasiliev, A., Volkova, O., Zvereva, E. & Markina, M. Milestones of lowD quantum magnetism. npj Quant. Mater. 3, 18 (2018).
 27.
Okamoto, Y., Nohara, M., ArugaKatori, H. & Takagi, H. Spinliquid state in the S = 1/2 hyperkagome antiferromagnet Na_{4}Ir_{3}O_{8}. Phys. Rev. Lett. 99, 137207 (2007).
 28.
Koteswararao, B. et al. Magnetic properties and heat capacity of the threedimensional frustrated S = 1/2 antiferromagnet PbCuTe_{2}O_{6}. Phys. Rev. B 90, 035141 (2014).
 29.
Biffin, A. et al. Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in βLi_{2}IrO_{3}: full solution via magnetic resonant xray diffraction. Phys. Rev. B 90, 205116 (2014).
 30.
Biffin, A. et al. Noncoplanar and counterrotating incommensurate magnetic order stabilized by Kitaev interactions in γLi_{2}IrO_{3}. Phys. Rev. Lett. 113, 197201 (2014).
 31.
Nasu, J., Udagawa, M. & Motome, Y. Vaporization of kitaev spin liquids. Phys. Rev. Lett. 113, 197205 (2014).
 32.
Li, Y. et al. Gapless quantum spin liquid ground state in the twodimensional spin1/2 triangular antiferromagnet YbMgGaO4. Sci. Rep. 5, 16419 (2015).
 33.
Ma, Z. et al. Spinglass ground state in a triangularlattice compound YbZnGaO_{4}. Phys. Rev. Lett. 120, 087201 (2018).
 34.
Balz, C. et al. Physical realization of a quantum spin liquid based on a complex frustration mechanism. Nat. Phys. 12, 942–949 (2016).
 35.
Klanjˇsek, M. et al. A hightemperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130 (2017).
 36.
Li, Y. et al. Rareearth triangular lattice spin liquid: a singlecrystal study of YbMgGaO_{4}. Phys. Rev. Lett. 115, 167203 (2015).
 37.
Hermele, M. et al. Stability of U (1) spin liquids in two dimensions. Phys. Rev. B 70, 214437 (2004).
 38.
Han, T.H. et al. Fractionalized excitations in the spinliquid state of a kagomelattice antiferromagnet. Nature 492, 406–410 (2012).
 39.
Fåk, B. et al. Evidence for a spinon Fermi surface in the triangular S = 1 quantum spin liquid Ba_{3}NiSb_{2}O_{9}. Phys. Rev. B 95, 060402 (2017).
 40.
Shen, Y. et al. Evidence for a spinon Fermi surface in a triangularlattice quantumspinliquid candidate. Nature 540, 559–562 (2016).
 41.
Paddison, J. A. M. et al. Continuous excitations of the triangularlattice quantum spin liquid YbMgGaO_{4}. Nature Phys. 13, 117–122 (2017).
 42.
Mei, J.W. & Wen, X.G. Fractionalized spinwave continuum in spin liquid states on the kagome lattice. Preprint at https://arxiv.org/abs/1507.03007 (2015).
 43.
Yamashita, M. et al. Highly mobile gapless excitations in a twodimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010).
 44.
Yamashita, S., Yamamoto, T., Nakazawa, Y., Tamura, M. & Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2, 275 (2011).
 45.
Fletcher, J. M. et al. Anhydrous ruthenium chlorides. Nature 199, 1089–1090 (1963).
 46.
Plumb, K. W. et al. αRuCl_{3}: a spin–orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).
 47.
Wang, W., Dong, Z.Y., Yu, S.L. & Li, J.X. Theoretical investigation of magnetic dynamics in αRuCl_{3}. Phys. Rev. B 96, 115103 (2017).
 48.
Rau, J. G., Lee, E. K.H. & Kee, H.Y. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).
 49.
Ran, K. et al. Spinwave excitations evidencing the Kitaev interaction in single crystalline αRuCl_{3}. Phys. Rev. Lett. 118, 107203 (2017).
 50.
Janssen, L., Andrade, E. C. & Vojta, M. Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for αRuCl_{3} and Na_{2}IrO_{3}. Phys. Rev. B 96, 064430 (2017).
 51.
Zhu, Z., Kimchi, I., Sheng, D. N. & Fu, L. Robust nonabelian spin liquid and a possible intermediate phase in the antiferromagnetic Kitaev model with magnetic field. Phys. Rev. B 97, 241110 (2018).
 52.
Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).
 53.
Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid αRuCl_{3}. Science 356, 1055–1059 (2017).
 54.
Do, S.H. et al. Majorana fermions in the Kitaev quantum spin system αRuCl_{3}. Nat. Phys. 13, 1079 (2017).
 55.
Janˇsa, N. et al. Observation of two types of fractional excitation in the Kitaev honeycomb magnet. Nat. Phys. 14, 786–790 (2018).
 56.
Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transitions in αRuCl_{3}: XYlike frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015).
 57.
Cui, Y. et al. Highpressure magnetization and NMR studies of αRuCl_{3}. Phys. Rev. B 96, 205147 (2017).
 58.
Wang, Z. et al. Pressureinduced melting of magnetic order and emergence of a new quantum state in αRuCl_{3}. Phys. Rev. B 97, 245149 (2018).
 59.
Zhen, M J. W. et al. Recent progress on magneticfield studies on quantumspinliquid candidates. Chin. Phys. B 27, 106101 (2018).
 60.
Banerjee, A. et al. Excitations in the fieldinduced quantum spin liquid state of αRuCl_{3}. npj Quant. Mater. 3, 8 (2018).
 61.
Kasahara, Y. et al. Majorana quantization and halfinteger thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
 62.
Yamashita, S. et al. Thermodynamic properties of a spin1/2 spinliquid state in a κtype organic salt. Nat. Phys. 4, 459–462 (2008).
 63.
Yamashita, M. et al. Thermaltransport measurements in a quantum spinliquid state of the frustrated triangular magnet κ(BEDTTTF)_{2}Cu_{2}(CN)_{3}. Nat. Phys. 5, 44–47 (2009).
 64.
Isono, T. et al. Spinlattice decoupling in a triangularlattice quantum spin liquid. Nat. Commun. 9, 1509 (2018).
 65.
Freedman, D. E. et al. Site Specific Xray anomalous dispersion of the geometrically frustrated Kagom’e magnet, Herbertsmithite, ZnCu3(OH)6Cl2. J. Am. Chem. Soc. 132, 16185–16190 (2010).
 66.
Fu, M., Imai, T., Han, T.H. & Lee, Y. S. Evidence for a gapped spinliquid ground state in a kagome Heisenberg antiferromagnet. Science 350, 655–658 (2015).
 67.
Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986).
 68.
Li, Y. et al. Crystalline electricfield randomness in the triangular lattice spinliquid YbMgGaO_{4}. Phys. Rev. Lett. 118, 107202 (2017).
 69.
Zhang, X. et al. Hierarchy of exchange interactions in the triangularlattice spin liquid YbMgGaO_{4}. Phys. Rev. X 8, 031001 (2018).
 70.
Zhu, Z., Maksimov, P. A., White, S. R. & Chernyshev, A. L. Disorderinduced mimicry of a spin liquid in YbMgGaO_{4}. Phys. Rev. Lett. 119, 157201 (2017).
 71.
Luo, Q., Hu, S., Xi, B., Zhao, J. & Wang, X. Groundstate phase diagram of an anisotropic spin1/2 model on the triangular lattice. Phys. Rev. B 95, 165110 (2017).
 72.
Parker, E. & Balents, L. Finitetemperature behavior of a classical spin–orbitcoupled model for YbMgGaO_{4} with and without bond disorder. Phys. Rev. B 97, 184413 (2018).
 73.
Li, Y. et al. Muon spin relaxation evidence for the U(1) quantum spinliquid ground state in the triangular antiferromagnet YbMgGaO_{4}. Phys. Rev. Lett. 117, 097201 (2016).
 74.
Kimchi, I., Nahum, A. & Senthil, T. Valence bonds in random quantum magnets: theory and application to YbMgGaO_{4}. Phys. Rev. X 8, 031028 (2018).
 75.
Kitagawa, K. et al. A spin–orbitalentangled quantum liquid on a honeycomb lattice. Nature 554, 341 (2018).
 76.
Liu, H. & Khaliullin, G. Pseudospin exchange interactions in d^{7} cobalt compounds: possible realization of the kitaev model. Phys. Rev. B 97, 014407 (2018).
 77.
Headings, N. S., Hayden, S. M., Coldea, R. & Perring, T. G. Anomalous highenergy spin excitations in the highTc superconductorparent antiferromagnet La_{2}CuO_{4}. Phys. Rev. Lett. 105, 247001 (2010).
 78.
Dalla Piazza, B. et al. Fractional excitations in the squarelattice quantum antiferromagnet. Nat. Phys. 11, 62 (2014).
 79.
Mustonen, O. et al. Spinliquidlike state in a spin1/2 squarelattice antiferromagnet perovskite induced by d^{10}d^{0} cation mixing. Nat. Commun. 9, 1085 (2018).
 80.
Powell, B. J. & McKenzie, R. H. Quantum frustration in organic mott insulators: from spin liquids to unconventional superconductors. Rep. Prog. Phys. 74, 056501 (2011).
 81.
Kelly, Z. A., Gallagher, M. J. & McQueen, T. M. Electron doping a kagome spin liquid. Phys. Rev. X 6, 041007 (2016).
 82.
Ueno, K. et al. Fieldinduced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn. 83, 032001 (2014).
 83.
Xu, Y. et al. Absence of magnetic thermal conductivity in the quantum spinliquid candidate YbMgGaO4. Phys. Rev. Lett. 117, 267202 (2016).
 84.
Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).
 85.
Itou, T., Oyamada, A., Maegawa, S. & Kato, R. Instability of a quantum spin liquid in an organic triangularlattice antiferromagnet. Nat. Phys. 6, 673–676 (2010).
 86.
Ribak, A. et al. Gapless excitations in the ground state of 1TTaS_{2}. Phys. Rev. B 96, 195131 (2017).
 87.
Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S = 1/2 kagom’e antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).
 88.
Feng, Z. et al. Gapped Spin1/2 spinon excitations in a new Kagome quantum spin liquid compound Cu_{3}Zn(OH)_{6}FBr. Chin. Phys. Lett. 34, 077502 (2017).
 89.
Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Emergence of inhomogeneous moments from spin liquid in the triangularlattice Mott insulator κ(ET)_{2}Cu_{2}(CN)_{3}. Phys. Rev. B 73, 140407 (2006).
 90.
Law, K. T. & Lee, P. A. 1TTaS_{2} as a quantum spin liquid. Proc. Natl. Acad. Sci. USA 114, 6996–7000 (2017).
 91.
Kratochvilova, M. et al. The lowtemperature highly correlated quantum phase in the charge densitywave 1TTaS_{2} compound. npj Quant. Mater. 2, 42 (2017).
 92.
Yu, Y. J. et al. Heat transport study of the spin liquid candidate 1T−TaS_{2}. Phys. Rev. B 96, 081111 (2017).
 93.
Dally, R. et al. Shortrange correlations in the magnetic ground state of Na_{4}Ir_{3}O_{8}. Phys. Rev. Lett. 113, 247601 (2014).
 94.
Shockley, A. C., Bert, F., Orain, J.C., Okamoto, Y. & Mendels, P. Frozen state and spin liquid physics in Na_{4}Ir_{3}O_{8}: an NMR study. Phys. Rev. Lett. 115, 047201 (2015).
 95.
Singh, Y. & Gegenwart, P. Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na_{2}IrO_{3}. Phys. Rev. B 82, 064412 (2010).
 96.
Singh, Y. et al. Relevance of the Heisenberg–Kitaev Model for the honeycomb lattice iridates A_{2}IrO_{3}. Phys. Rev. Lett. 108, 127203 (2012).
 97.
Sears, J. A. et al. Magnetic order in α−RuCl_{3}: a honeycomblattice quantum magnet with strong spin–orbit coupling. Phys. Rev. B 91, 144420 (2015).
Acknowledgements
The work was supported by National Key Projects for Research and Development of China (Grants Nos. 2016YFA0300401, 2016YFA0300503, and 2016YFA0300504), the National Natural Science Foundation of China (Grants Nos. 11822405, 11674157, 11674158, and 11774152), the Natural Science Foundation of Jiangsu Province with Grant No. BK20180006, Fundamental Research Funds for the Central Universities with Grant No. 020414380105, and the Office of International Cooperation and Exchanges of Nanjing University. We thank for the stimulating discussions with Yinchen He, Yi Zhou, JiaWei Mei, Yang Qi, Ziyang Meng and Itamar Kimchi.
Author information
Affiliations
Contributions
S.L.Y., S.Y.L., W.Q.Y. and J.X.L. wrote the manuscript together.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Wen, J., Yu, SL., Li, S. et al. Experimental identification of quantum spin liquids. npj Quantum Mater. 4, 12 (2019). https://doi.org/10.1038/s4153501901516
Received:
Accepted:
Published:
Further reading

Magnetization Plateaus at Low Temperature in a Triangular Spin Tube
Journal of Low Temperature Physics (2021)